首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5806篇
  免费   156篇
  国内免费   16篇
化学   4206篇
晶体学   63篇
力学   70篇
综合类   1篇
数学   247篇
物理学   1391篇
  2022年   24篇
  2021年   63篇
  2020年   79篇
  2019年   75篇
  2018年   53篇
  2017年   46篇
  2016年   91篇
  2015年   96篇
  2014年   102篇
  2013年   251篇
  2012年   245篇
  2011年   306篇
  2010年   145篇
  2009年   158篇
  2008年   293篇
  2007年   302篇
  2006年   303篇
  2005年   315篇
  2004年   307篇
  2003年   202篇
  2002年   181篇
  2001年   172篇
  2000年   156篇
  1999年   76篇
  1998年   36篇
  1997年   55篇
  1996年   76篇
  1995年   67篇
  1994年   71篇
  1993年   93篇
  1992年   104篇
  1991年   93篇
  1990年   75篇
  1989年   92篇
  1988年   80篇
  1987年   58篇
  1986年   59篇
  1985年   99篇
  1984年   107篇
  1983年   56篇
  1982年   62篇
  1981年   53篇
  1980年   59篇
  1979年   68篇
  1978年   65篇
  1977年   77篇
  1976年   51篇
  1975年   45篇
  1974年   46篇
  1973年   51篇
排序方式: 共有5978条查询结果,搜索用时 68 毫秒
31.
Certain metal complexes are known as high-performance CO2 reduction photocatalysts driven by visible light. However, most of them rely on rare, precious metals as principal components, and integrating the functions of light absorption and catalysis into a single molecular unit based on abundant metals remains a challenge. Metal-organic frameworks (MOFs), which can be regarded as intermediate compounds between molecules and inorganic solids, are potential platforms for the construction of a simple photocatalytic system composed only of Earth-abundant nontoxic elements. In this work, we report that a tin-based MOF enables the conversion of CO2 into formic acid with a record high apparent quantum yield (9.8 % at 400 nm) and >99 % selectivity without the need for any additional photosensitizer or catalyst. This work highlights a new MOF with strong potential for photocatalytic CO2 reduction driven by solar energy.  相似文献   
32.
We newly designed and prepared a novel molybdenum complex bearing a 4-[3,5-bis(trifluoromethyl)phenyl]pyridine-based PNP-type pincer ligand, based on the bond dissociation free energies (BDFEs) of the N−H bonds in molybdenum-imide complexes bearing various substituted pyridine-based PNP-type pincer ligands. The complex worked as an excellent catalyst toward ammonia formation from the reaction of an atmospheric pressure of dinitrogen with samarium diiodide as a reductant and water as a proton source under ambient reaction conditions, where up to 3580 equivalents of ammonia were formed based on the molybdenum atom of the catalyst. The catalytic activity was significantly improved by one order of magnitude larger than that observed when using the complex before modification.  相似文献   
33.
We analyzed the surface atomic structure of highly oriented pyrolytic graphite (HOPG) substrate exfoliated with adhesive tape, using high‐resolution transmission electron microscopy and scanning transmission electron microscopy‐electron energy‐loss spectroscopy (STEM‐EELS). The surface step height of the exfoliated HOPG substrate was determined using high‐angle annular dark‐field‐scanning transmission electron microscopy (HAADF‐STEM) images and the depth profiles of the EELS spectra of a cross‐sectioned thin foil specimen prepared via focused ion beam milling. The exfoliated surface of the HOPG substrate presented disordered and curved graphene layers. The STEM‐EELS measurements indicated that upon exfoliation, the surface of the HOPG substrate reacted with atmospheric water and oxygen molecules.  相似文献   
34.
8-Anilino-1-naphthalenesulfonic acid (ANS) is used as a hydrophobic fluorescence probe due to its high intensity in hydrophobic environments, and also as a microenvironment probe because of its unique ability to exhibit peak shift and intensity change depending on the surrounding solvent environment. The difference in fluorescence can not only be caused by the microenvironment but can also be affected by the binding affinity, which is represented by the binding constant (K). However, the overall binding process considering the binding constant is not fully understood, which requires the ANS fluorescence binding mechanism to be examined. In this study, to reveal the rate-limiting step of the ANS–protein binding process, protein concentration-dependent measurements of the ANS fluorescence of lysozyme and bovine serum albumin were performed, and the binding constants were analyzed. The results suggest that the main factor of the binding process is the microenvironment at the binding site, which restricts the attached ANS molecule, rather than the attractive diffusion-limited association. The molecular mechanism of ANS–protein binding will help us to interpret the molecular motions of ANS molecules at the binding site in detail, especially with respect to an equilibrium perspective.  相似文献   
35.
We demonstrate that multi-fluorinated boron-fused azobenzene (BAz) complexes can work as a strong electron acceptor in electron donor-acceptor (D-A) type π-conjugated polymers. Position-dependent substitution effects were revealed, and the energy level of the lowest unoccupied molecular orbital (LUMO) was critically decreased by fluorination. As a result, the obtained polymers showed near-infrared (NIR) emission (λPL=758–847 nm) with high absolute photoluminescence quantum yield (ΦPL=7–23%) originating from low-lying LUMO energy levels of the BAz moieties (−3.94 to −4.25 eV). Owing to inherent solid-state emissive properties of the BAz units, deeper NIR emission (λPL=852980 nm) was detected in film state. Clear solvent effects prove that the NIR emission is from a charge transfer state originating from a strong D-A interaction. The effects of fluorination on the frontier orbitals are well understandable and predictable by theoretical calculation with density functional theory. This study demonstrates the effectiveness of fluorination to the BAz units for producing a strong electron-accepting unit through fine-tuning of energy gaps, which can be the promising strategy for designing NIR absorptive and emissive materials.  相似文献   
36.
The regulation of multicolor fluorescence changes in mechanochromic fluorescence (MCF) remains a challenging task. Herein, we report the regulation of MCF using a donor-acceptor structure. Two crystal polymorphs, BTD-pCHO(O) and BTD-pCHO(R) produced by the introduction of formyl groups to an MCF dye, respond to a mechanical stimulus, allowing a three-color fluorescence change. Specifically, the orange-colored fluorescence of the metastable BTD-pCHO(O) polymorph changed to a deep-red color in the amorphous-like state to finally give a red color in the stable BTD-pCHO(R) polymorph. This change occurred by mechanical grinding followed by vapor fuming. The two different crystal packing patterns were selectively regulated by the electronic effect of the introduced functional groups. The two types of selectively formed crystals in BTD(F)-pCHO bearing fluorine atoms, and BTD(OMe)-pCHO bearing methoxy groups, respond to mechanical grinding, allowing for the regulation of multicolor MCL from a three-color change to two different types of two-color changes.  相似文献   
37.
Near infrared spectroscopy is an overtone spectroscopy regarded as a quick and non-destructive method that provides analytical solutions for components that represent approximately 1% or more of the total mass of the investigated composite samples. Aquaphotomics offers the possibility for disentanglement of information remaining hidden in the spectra when conventional data evaluation methods are used, since this concept utilizes changes of the water structure induced by the measured solute as specific molecular vibrations at water bands. Here, near infrared technique and aquaphotomics are applied for non-destructive identification and quantification of mono- and di-saccharide solutes at 100–0.02 mM concentration that is accepted as unachievable with near infrared spectroscopy. The results presented in this study support the aquaphotomics' water molecular mirror concept that explores spectral changes related to water molecular rearrangements caused by minute changes of the solutes in the aqueous systems. The method provides quick and accurate alternative for classical analytical measurements of saccharides even at millimolar concentration levels.  相似文献   
38.
Two new triterpene glycosides, 1 and 2 , together with three known ones, were isolated from roots of Acanthophyllum laxiusculum Schiman ‐Czeika . The structures of the new compounds were established by extensive 1D‐ and 2D‐NMR spectroscopic experiments and MS analyses as 23‐Oβ‐D ‐galactopyranosylgypsogenic acid 28‐O‐{β‐D ‐glucopyranosyl‐(1→2)‐6‐O‐[4‐carboxy‐3‐hydroxy‐3‐methyl‐1‐oxobutyl]‐β‐D ‐glucopyranosyl‐(1→6)}‐[β‐D ‐glucopyranosyl‐(1→3)]‐β‐D ‐galactopyranosyl ester ( 1 ) and gypsogenic acid 28‐O‐{β‐D ‐glucopyranosyl‐(1→2)‐6‐O‐[4‐carboxy‐3‐hydroxy‐3‐methyl‐1‐oxobutyl]‐β‐D ‐glucopyranosyl‐(1→6)}‐[β‐D ‐glucopyranosyl‐(1→3)]‐β‐D ‐galactopyranosyl ester ( 2 ).  相似文献   
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号